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Abstract: Presently, the use of fossil fuels is not ecologically sustainable, which results in the need
for new alternative energies such as biodiesel. This work presents a review of the classification of
the lipidic feedstocks and the catalysts for biodiesel production. It also presents the pros and cons of
the different processes and feedstocks through which biodiesel is obtained. In this context, cooking
oil (WCO) has emerged as an alternative with a high potential for making the process sustainable.
A detected limitation to achieving this is the high content of free fatty acids (FFA) and existing prob-
lems related to homogeneous and heterogeneous catalysts. To overcome this, the use of bifunctional
catalysts is being evaluated by the scientific community. Thus, this work also explores the advances in
the study of bifunctional catalysts, which are capable of simultaneously carrying out the esterification
of free fatty acids (FFA) and the triglycerides present in the WCO. For the sake of an improved
understanding of biodiesel production, flow diagrams and the mechanisms implied by each type
of process (enzymatic, homogenous, and heterogeneous) are provided. This article also highlights
some of the challenges in catalyst development for sustainable biodiesel production from low-grade
raw materials.

Keywords: biodiesel; waste cooking oil; bifunctional catalysts; transesterification

1. Introduction
1.1. Biodiesel Global Scenario

The energy model that currently prevails is highly dependent on the usage of fossil
fuels and supports various sectors such as transportation, industry, and agriculture, among
others [1]. However, this model has become less and less viable due to the reduction
in the non-renewable energy source, its increasing price, and the fact that this type of
fuel favors an elevation in greenhouse gas emissions, some of which have been shown to
have an impact on people’s health as they are related to various types of cancer [2–4]. As
stated by the United Nations’ Sustainable Development Goals (SDG), regarding sustainable
energy access (SDG7) and climate change (SDG13), several countries have started to take
actions to reduce carbon emissions by at least 43% by 2030 and to not reach an increase in
global temperature of 1.5 ◦C between 2030 and 2050 (IPCC, 2018) [5].

The aforementioned problems have motivated the development of other cleaner
energy options. An example is biodiesel, because of its capability to be produced from
vegetable and/or animal fats while also being able to be used in diesel engines without
major changes because it poses physicochemical characteristics similar to those of high-
performance diesel [6–8]. This biofuel improves engine performance in addition to having
cleaner combustion because it has an oxygenated molecule that allows it to reduce CO2
emissions by up to 80% [6,9].
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In the last decade, there has been an increase in biodiesel production of approximately
4–14%, which is an economic advantage due to its growing demand [10]. Figure 1 shows the
distribution of biodiesel production per geographical area in 2021 (42.7 billion liters) [11].
It can be observed in this figure that Europe produces the highest percentage of biodiesel
(34%) around the globe. Biodiesel production from 2023 to 2027 is expected to grow from
50 to 52.5 billion liters, respectively [12].
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However, the production of this biofuel still cannot match its demand in multiple coun-
tries, mainly due to its production cost, which is derived from 60–80% of the cost of the lipid
raw material [4,9]. Figure 2 shows biodiesel consumption in 2021 (45.6 billion liters) [11].
It is not surprising that the highest consumption percentage also lies in Europe (35%), and
Canada and Mexico are some of the lowest consumers (1.4%).
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In addition, there are several countries where the legislation to promote the production
of biodiesel is nonexistent and there are no established regulations about the composition of
biodiesel with petroleum diesel mixtures, as has been the case in other countries in Europe
and America.
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In recent years, many biodiesel-producing companies have used feedstock that is more
competitive and accessible than edible seed oils, such as waste oils. Furthermore, since
the beginning of the Ukraine–Russia conflict, the price of biofuels has increased due to the
shortage or increase in price of raw materials [13], and several European countries have
been forced to use cheaper oils or waste cooking oil (WCO) to obtain biodiesel.

1.2. Biodiesel Feedstock

Figure 3 shows the feedstocks from which this biofuel can be produced. Furthermore,
the context of their use will be discussed.
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• Edible Oils (EO): This raw material has been used and studied for several decades
mainly because, of its purity [14]. Nevertheless, its use is currently in great controversy,
mainly due to the ethical dilemma derived from its nutritional value in the market [6].
In addition, the use of this type of raw material increases the cost of biodiesel produc-
tion [14]. Some of the most commonly used refined oils are soybean, peanut, corn, and
sunflower [6].

• Non-edible Oils (NEO): The need to discover low-cost raw materials that do not com-
pete with the food market has led to various investigations for biodiesel production
from non-edible oils and reusable oils [6,14]. NEO has shown a reduction in biodiesel
production costs and is highly available in several parts of the world [6]. Around the
world, in different areas (mainly Africa and Asia), various species of plants are known
to have an oil content of≥20% within their seeds, which makes them potential sources
of edible oils [14]. However, the main disadvantage of using NEO as a raw material
comes from their high free fatty acid (FFA) content since they would saponify when in
contact with a basic catalyst [6]. To obtain a high-quality biodiesel from this feedstock,
it is necessary to conduct esterification prior to the transesterification reaction [15].
However, carrying out two processes considerably increases the final cost of biodiesel
production. Among the non-edible oils used to obtain biodiesel are: Jatropha curcas,
Croton megalocarpus, Ricinus communis, Cerbera odollam, Celastrus paniculatus, Lepidium
perfoliatum Linn, Ailanthus altissima (Mill.), Capparis spinosa L., Calophyllum inophyllum,
Carthamus lanatus L., neem, jojoba, date seed, palm kernel oil, medlar seeds, karanja,
and mahua [4,6,16–21]. Different from these oils, there are others such as that from
the Raphnus raphanistrum L. seed, which is easy to grow and whose oil FFA content
is very low, which allows the transesterification reaction to be carried out in a single
step, which would solve the aforementioned drawbacks [17].

• Microalgae: This group of unicellular organisms can be cultivated in multiple climatic
conditions and can be a great source of biomass with a high fat content (between
40–60%) [22,23]. This raw material has some considerable advantages, such as its
rapid growth, its ability to grow in wastewater bodies, and its high lipid content. How-
ever, some of their main disadvantages are the need for large amounts of nutrients
such as nitrogen and phosphorus, and some species of microalgae produce harmful
toxins [22,24] and the need for large areas of land for their cultivation [25]. Some
examples of microalgae that produce biodiesel are Chlamydomonas, Chlorella vulgaris,
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Chlorophyceae, Chrysophyceae, Crypthecodinium cohnii, Cylindrothec, Dinophyceae, Isochry-
sis, Monallanthus salina, Nannochliropsis, Rhodophyceae, and Xanthophyceae [14,26–30].

• Animal Fat (AF): This feedstock is available in large quantities and generally is taken
from waste generated by slaughterhouses or food processing industries [31]. This
residue is considered an economically viable raw material, being used mainly in
Europe, the United States, and Brazil, where it is considered the 2nd most used raw
material for biodiesel production [31–33]. As with reusable oils and non-edible oils, AF
has high fatty acid contents (5–40%) [34,35]. Therefore, it is necessary to use a catalyst
capable of handling the high fatty acid contents or a process of two steps (esterification
and transesterification) to obtain commercial-quality biodiesel [22,32]. Among the
most commonly used animal fats are chicken fat, lard, tallow (sheep or beef), and
mixtures of all of the above [22].

• Waste Cooking Oil (WCO) or Used Cooking Oil (UCO): The usage of this feedstock
allows for a reduction in the production cost of biodiesel by 70–80%, in addition to
being a raw material with high availability [2,36,37]. This lipid raw material can be
considered a viable option, mainly because it is a waste without nutritional value
generated by restaurants, households, and food processing industries [38]. WCO
can be classified as a combination of triglycerides and free fatty acids that have
undergone physicochemical changes, which occur when the oils are subjected to high
temperatures and humidity for food preparation [37].

• The use of WCO to obtain biodiesel has a double benefit: economically, it allows
a decrease in the cost of its production, and environmentally, it allows a reduction
in environmental contamination in water bodies and soils derived from its incorrect
disposal [39]. To obtain biodiesel from WCO, it is necessary to carry out three stages:
pretreatment, transesterification reaction, and biodiesel purification.

When EO or microalgae oils are used as lipid feedstocks, it is possible to obtain high-
quality biodiesel through the use of a conventional basic catalyst in the transesterification
reaction. The above is attributed to the low content of free fatty acids (FFA) in the raw
material. Nonetheless, when unrefined or waste raw materials are used, it is not possible to
omit a pre-treatment of the raw material. The objective of the pre-treatment is to eliminate
solid particles and contaminants from the cooking process. Depending on the catalyst
to be used, it may be imperative to perform acid esterification to reduce the amount of
FFA present in the lipid raw material, followed by basic transesterification. However, this
two-step process implies major energy consumption and higher production costs [14].

Recently, other unconventional feedstocks to produce biodiesel have begun to gain rel-
evance, such as those obtained from instant coffee production (spent coffee grounds, SCG)
or fat derived from insect biomass (black soldier fly larvae, H. illucens, BSF) [40–44]. World-
wide, it is estimated that 60 million tons of spent coffee grounds (SCG) are generated [45].
The coffee residue contains a high amount of fat (10–20%), and from this percentage, 80–90%
are glycerides, becoming a potential raw material to produce biodiesel [46]. With SCG oil,
biodiesel yields of 97.11–97.18% have been achieved [40,44]. Insects have a high fat content
(34–58%) compared to vegetable oils, which range from 15–46% [43]. For this reason, fats
derived from insects are attracting more interest in the production of biodiesel. Some of
the insects that have been studied are mealworm beetles, blowflies, meat flies, houseflies,
black soldier flies, and superworms [43,47–50]. Recently, the larva of the black soldier
fly H. illucens (BSFL) is the one that has generated the most expectations because it has
a high amount of fat (50%) [51,52], which can vary depending on the diet of the BSFL;
reporting important percentages of fatty acids: lauric acid (47.47%) [53], oleic acid (41.90%),
and palmitic acid (39.83%) [54]. Various methods have been used to obtain biodiesel from
BSF: acid-catalyzed esterification followed by alkali-catalyzed transesterification [55–60];
enzymatic catalysis (Novozym 435) [61], direct transesterification (the lipid extraction and
transesterification are carried out in one step) [62,63], and non-catalytic transesterification
(without lipid extraction, direct conversion of biodiesel from dry BSFL) [59]. Depending on
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the process for obtaining biodiesel and the diet that the BSFL have had, the biodiesel yield
ranges from 90–98%.

Waste Cooking Oil as a Feedstock for Biodiesel Production

Since 2014, the main exporting countries of WCO to the EU have been increasing,
being mainly China, Indonesia, Malaysia, Russia, the United States, and Saudi Arabia [64].
In 2019, WCO represented the second-most important feedstock, which translates to 21% of
the total feedstock for biodiesel production. In the European Union, the greatest biodiesel
producers were Germany, the Netherlands, Portugal, the United Kingdom, Spain, and
Austria, representing 90% of the use of WCO. However, in 2020, WCO collection decreased
during the COVID-19 pandemic as many countries in the EU closed or restricted restaurant
services [65].

According to Claeys et al. [66], almost one fifth of all European biofuels are made from
WCO, which has also seen the highest growth compared to any other biomass-based diesel
raw materials in Europe and North America in recent years. Globally, 6.6 million tons of
WCO biofuel were consumed in 2021, representing 5% of the total biofuels market [66]. The
size of the global WCO market was $6.1 billion in 2022 and is projected to attain $8.9 billion
by 2028, registering a 6.3% compound annual growth rate (CAGR) from 2023 to 2028 [67].

Due to the aforementioned, used cooking oil represents a viable alternative to satisfy
the demand for biodiesel, in addition to contributing to the proper handling and disposal
of this residue. This process contributes to the global politics of establishing a circular
economy; furthermore, because of the use of residue as a raw material, the environmental
impact categories are positively affected.

However, it is imperative to take into consideration the quality of the WCO since the
quality of the biodiesel obtained depends on it. During the frying process, oils are heated
to temperatures above 100 ◦C and can be used repeatedly, which leads to a degradation of
the quality of the oil because, during this process, thermal, hydrolytic, oxidative reactions,
polymerization and cracking [68,69], chemically modify the original oil. These changes
alter the properties of the WCO, presenting a higher content of free fatty acids (FFA), which
may affect the transesterification reaction, favoring the formation of soaps (saponification)
when basic catalysts are used. Other properties that are affected by the frying process are
viscosity, change in surface tension, flash point, color, and moisture content [69,70]. For this
reason, it is compulsory to conduct an adequate characterization of the residual cooking
oil to guarantee that the biodiesel produced meets quality standards and contributes to
the achievement of the sustainable development goals. Tables 1 and 2 show the fatty acid
composition and the properties of several WCO samples, respectively. As can be observed,
the composition and properties hinge on the type of oil and the handling it has had.

Table 1. Fatty acid composition of WCO.

Type of Fatty Acid
% % % % % % % %

[71] a [72] b [72] c [73] d [74] e [75] f [76] g [77] h

lauric (C12:0) 0.03 - - - - - - -

myristic (C14:0) 0.16 - - 0.77 - 1.00 - -

palmitic (C16:0) 12.03 0.36 5.98 31.88 11.00 39.00 8.48 18.14

palmitoleic (C16:1) 0.17 - - - - - - -

margaric (C17:0) 0.12 - - - - - - -

stearic (C18:0) 4.40 - - 6.45 4.00 4.50 2.73 4.73

oleic (C18:1) 23.58 0.8 2.74 41.04 24.00 44.60 66.79 38.86

linoleic (C18:2) 52.48 0.10 33.89 17.98 54.00 10.90 20.14 36.45

arachidic (C20:0) 0.33 - - - - - 1.86 -

linolenic (C18:3) 6.65 - - 0.43 7.00 - - 1.82
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Table 1. Cont.

Type of Fatty Acid
% % % % % % % %

[71] a [72] b [72] c [73] d [74] e [75] f [76] g [77] h

erucid (C22:1) - 0.26 - - - - - -

caprylic(C8:0) - - - - - - - -

undecylic (C11:0) - - 0.52 - - - - -

Others - 0.20 - - - - - -

a Waste oil from local food industry in Toluca, Mexico. b Waste sunflower oil from restaurants (fish and chips) in
Durban, South Africa. c Waste sunfoil from restaurants (chips) in Durban, South Africa. d Waste oil from local
restaurants in Bushehr, Iran. e Waste oil from canteen of Malaviya National Institute of Technology, Jaipur India.
f Waste oil from local source-UTP Cafeteria in Seri Iskandar, Perak. g Waste oil from local restaurant in Mérida,
Yucatán. México. h Waste oil from a restaurant in Malaysia.

Table 2. Properties of waste cooking oil samples.

WCO Properties [68] a [72] b [72] c [74] d [75] e [76] f [78] g [79] h

Acid value (mg KOH/g) 0.31 2.29 1.44 1.2 2.04 7.06 2.8 2.7

Viscosity at 40 ◦C (mm2/s) 49.40 31.38 35.23 54.00 51.04 42.98 13.45 -

Water content (wt%) 0.14 0.36 5.98 - 0.12 0.04 0.09 0.3

a Waste oil from a restaurant in Toluca, Mexico. b Waste sunflower oil from restaurants (fish and chips) from
Durban, South Africa. c Waste sunfoil from restaurants (chips) from Durban, South Africa. d Waste oil from
canteen of Malaviya National Institute of Technology, Jaipur India. e Waste oil from local source-UTP Cafeteria,
Seri Iskandar, Perak. f Waste oil from local restaurant in Mérida, Yucatán. México. g Waste oil from home activities,
Suez, Egypt. h Waste oil from fast food.

As previously mentioned, during the frying process, the properties of the oils are
modified. Saturated fatty acids like stearic acid, palmitic acid, and monounsaturated
fatty acids like oleic acid increase in relation to polyunsaturated fatty acids like linoleic
acid [72,80]. This is important because biodiesel obtained from feedstocks with a high
content of saturated or monounsaturated fatty acids has superior resistance to oxidation.
The oxidation rates for fatty acids (C18) are: linolenic > linoleic > oleic. A high oxidation
rate can cause damage to fuel pumps and injectors [81].

This work will discuss biodiesel synthesis methods, emphasizing esterification and
transesterification; the different types of catalysts that can be used in biofuel synthesis will
also be discussed, as well as some of their advantages and disadvantages. The present work
seeks to highlight the advances in the study of the development of bifunctional catalysts
and the challenges for sustainable biodiesel production from waste cooking oil (WCO),
although some results with other raw materials like refined oil and oil from microalgae are
presented to highlight the relevance of those results obtained with WCO.

2. Biodiesel Preparation Methods and Strategies
2.1. Pyrolysis

Pyrolysis, otherwise called thermal cracking, is a process that consists of decomposing
organic matter by heating it at high temperatures in an atmosphere devoid of air or
oxygen [82]. The resulting properties of the fuel obtained by this method are very similar to
those of petroleum diesel; however, the equipment used for thermal cracking is expensive
and releases gases into the environment, eliminating the environmental advantage of
biodiesel [83].

2.2. Esterification

This reaction is generally used as the pretreatment of lipid feedstocks with high FFA
contents, such as WCO. As you can see in Scheme 1, the esterification reaction involves the
production of fatty acid monoalkyl esters (FAMEs) from the reaction of FFAs with alcohol
and the use of a catalyst [4].
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Commonly, this reaction is favored by acid catalysis, with sulfuric acid (H2SO4) being
the most widely used catalyst [4].

2.3. Transesterification

This is the process that has been used the most for biodiesel production on an indus-
trial scale because only three raw materials are required to produce it: oil, alcohol, and
a catalyst [32,84]. Scheme 2 shows this reaction, which consists of the transformation of
the triglycerides contained in oils, an alcohol, and a catalyst to obtain fatty acid monoalkyl
esters (FAMEs) [4]. This procedure has proven to be capable of producing good-quality
biodiesel, depending on the lipid feedstock used. The transesterification reaction requires
the use of triglycerides, which results in the need for a lipid raw material with a high degree
of purity, mainly due to the high sensitivity of most catalysts to the presence of FFA in
percentages greater than 2% [32,84]. The transesterification reaction consists of three steps:
the conversion of triglycerides (TG) into diglycerides (DG), these into monoglycerides
(MG), and finally obtaining glycerol (G).
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To obtain quality biodiesel from a lipid raw material with a high free fatty acid content
(>2% by weight), it is suggested to carry out a pretreatment process, such as esterification,
thus ensuring the quality of the final product [85]. However, this double process implies
a meaningful increase in the production cost of biodiesel.

Direct Transesterification

The direct (or in situ) transesterification reaction occurs when the extraction and trans-
esterification of lipids from the biomass are carried out in the same step. This reaction
is further enhanced when a co-solvent is used [62,86–88]. The co-solvent increases the
solubility of alcohol in lipids. Originally, in direct transesterification, methanol was used as
a reagent and solvent at the same time, which implied an excess of methanol that caused
the activity of the catalyst in the reaction to decrease as well as its effect as a disruptor
agent of the cell wall, so the yield of biodiesel also decreased [44,89]. Generally, organic
solvents such as chloroform, h-hexane, n-pentane, acetone, diethyl ether, isopropranol, and
petroleum ether have been used in direct transesterification [46,62,89], with the aim of reduc-
ing the amounts of methanol and avoiding the aforementioned problems. However these
types of chemical reagents are toxic and can cause serious environmental problems [44,90].
For this reason, several studies have reported the use of more environmentally friendly
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co-solvents such as 2-methyltetrahydrofuran (2-MeTHF), cyclopentyl methyl ether (CPME),
and 1,8-Diazabicyclo [5.4.0]undec-7-ene (DBU) solvents [91–93].

2.4. Electrolysis

The electrolysis method allows the use of feedstocks with a high content of FFA and
water [94–96]. Some of the advantages of electrolysis are that no pretreatment is required
to decrease free fatty acids and lipid moisture [97]. In addition, methoxide ions keep
forming rapidly in the electrolysis cell [94]. At the cathode, hydroxide ions are obtained
from the electrolysis of water molecules (Equation (1)), which then react with the methanol
molecules to produce methoxide ions (Equation (2)). OH− ions are formed at the cathode,
while H+ ions form at the anode (Equation (3)) [96,98], which ensures that esterification and
transesterification can be carried out in the same electrolytic cell [99]. By adding NaCl to the
mixture (Equation (4)) [96], the reaction rate rises due to the increase in conductivity [100].
The transesterification reaction requires the presence of methoxide ions that attack the
carbon of the carbonyl group to obtain methyl esters [101,102].

Cathodic Reaction:
2H2O + 2e− → H2 + 2OH− (1)

Proton Transfer Reaction:

CH3OH + OH− → CH3O− + H2 (2)

Anodic Reaction:
2H2O → O2 + 4H+ + 4e− (3)

2Cl− → Cl2 + 2e− (4)

The biodiesel produced by any of the aforesaid methods, depending on purity, can
be used directly in the engines or in blends. Blending or dilution consists of mixing
biodiesel or vegetable oil with diesel. This strategy aims to reduce the utilization of
fossil fuels in addition to the decrease in the viscosity of the mixture, which improves
the efficiency of compression engines [82,103]. Fossil fuel dilutions are made with some
additives (biodiesel, animal fat, vegetable oil, bioethanol, etc.). Some of the most common
blends are B10 (90% additive and 10% diesel) and B20 (80% additive and 20% diesel) [82]. In
this context, biodiesel is known as a bioaditive. This process, however, presents important
disadvantages, such as the generation of gums when oils with high FFA content are used
and the generation of carbon deposits inside the tanks and engines. In addition, for a diesel
engine to be able to use vegetable oils, significant changes in the materials of the pipes and
injectors need to be made [82]. To avoid these problems, some authors suggest mixing the
oils before carrying out the transesterification reaction, which would not only solve the
problem of insufficient raw materials but also improve the quality of the biofuel [104].

3. Catalysis in the Production of Biodiesel

It is well known that the transesterification reaction occurs at slow reaction rates, and
for biodiesel production to become sustainable, it is necessary to reduce reaction times and
reaction temperatures, for which the use of catalysts is required [105,106]. The reduction of
these two variables implies lower energy consumption and therefore lower environmental
impacts [107] and costs.

The catalysis studied in biodiesel production has three main categories: (1) homoge-
neous catalysis, (2) enzymatic catalysis, and (3) heterogeneous catalysis. Next, each of the
categories and their subdivisions will be discussed.

3.1. Homogeneous Catalysis

In homogeneous catalysis, reactants and the catalyst are in the same phase, which is
generally liquid. These catalysts are frequently used in industrial-scale processes because
they present higher reaction rates than heterogeneous catalysis.
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However, they have some disadvantages, for example, the impossibility of recovering
the catalyst when the reaction is finished, in addition to the need for a purification process
where large amounts of residual water are generated [108]. Figure 4 presents the biodiesel
production process using homogeneous catalysts.
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Next, the subdivisions of this type of catalysis are discussed: (1) Homogeneous acid
catalysis and (2) Homogeneous basic catalysis.

3.1.1. Homogeneous Acid Catalysis

This type of catalyst admits the use of unrefined lipid raw materials because they
present a high tolerance to FFA. Though this process is slower than basic catalysis.

Next, Table 3 shows some examples of homogeneous acid catalysts, in addition to the
type of feedstock used for the production of biodiesel, the reaction conditions used, and the
%FAMEs obtained. It can be seen in Table 3 that the preferred acids to be used as catalysts
are hydrochloric, sulfuric, and phosphoric acids.

Despite the fact that this kind of catalyst has a high tolerance to the FFA content within
the lipid raw material, its use has not been extended at an industrial level, mainly because
of its corrosion hazards, so its use poses environmental and safety risks [22]. In addition, to
remove this type of catalyst from the final biodiesel, it is necessary to carry out multiple
washes with water, which implies a considerable environmental impact.

The reaction temperatures required in this type of catalysis can range from 60 ◦C
to 200 ◦C, depending on the process used for biodiesel production. Conventional batch
processes generally require higher temperatures and longer reaction times. However, some
research papers suggest the use of microwave-assisted reaction systems or ultrasound to
reduce these disadvantages [122].
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Table 3. Examples of homogeneous acid catalysts used in biodiesel production.

Catalyst Oil Reaction Conditions Methyl Esters Content
(%FAMEs) References

HCl Microalgae T = 76.67 ◦C; 0.54 M;
M:o = 7.92:1; t = 1.73 h 98.19 [109]

H2SO4 Chrysophyllum albidum T = 65 ◦C; CC% 2%wt;
M:o = 12:1; t = 0.33 h 98.15 [2]

Orthophosphoric
acid

H3PO4

Calophyllum inophyllum L. T = 60 ◦C; CC% 0.8%wt;
M:o = 9:1; t = 1.25 h 97.14 [110]

H2SO4 S. obliquus lipids T = 60 ◦C; CC% 10%wt;
M:o = 30:1; t = 4 h 96.68 [111]

H2SO4 Microalgae T = 80 ◦C; CC% 3%wt;
M:o = 9:1; t = 8 h 96.5 [112]

H2SO4 WCOEsterification T = 60 ◦C; CC% 5%wt;
M:o = 12:1; t = 3 h 95.4 [113]

Superphosphoric
acid

H(n+2)P(n)O(3n+1)

Palm oil T = 70 ◦C; CC% 9%wt;
M:o = 12:1 95 [114]

H2SO4 Jatropha oil T = 60 ◦C; CC% 4%wt;
M:o = 7:1; t = 1 h 92.4 [115]

H2SO4 Corn oil T = 200 ◦C; CC% 0.2%wt;
E:o = 18:1; t = 0.5 h 92 [116]

H2SO4 Palm oil T = 60 ◦C; CC% 5%wt;
M:o = 9:1; t = 4.5 h 91.1 [117]

H2SO4 Soybean oil T = 60 ◦C; CC% 3.5%wt;
M:o = 9:1; t = 1 h 90.6 [118]

H2SO4 Oleic acid T = 60 ◦C; CC% 5%wt;
M:o = 3:1; t = 2 h 89.3 [119]

H2SO4 WCO
T = 80 ◦C; CC% 1.5–3.5 %mol;

M:o = 50:1; t = 4 h;
170–180 kPa pressure

97.0 [120]

HCl Waste Coconut Oil
Esterification

T = 80 ◦C; CC% 3%wt;
M:o = 10:1; t = 1 h 90.45 [121]

T—Reaction temperature, CC—Catalyst weight, M:o—Methanol:oil molar ratio, E:o—ethanol:oil molar ratio,
t—Reaction time.

In addition, as can be observed in Table 3, the percentage contents of FAMEs obtained
are very close to the one required by the European Union Quality Standard (UNE-EN 1403),
which requires a minimum of 96.5% FAMEs. It is also important to emphasize that the
lipid raw materials used in this research are mainly refined oils. However, we must not
forget the environmental and safety disadvantages that arise during the use and storage of
these catalysts.

Generally, this type of catalysis is used in conjunction with basic catalysis, being used
as a pretreatment for unrefined lipid raw materials or with a free fatty acid content greater
than 1%. First, an acid esterification is performed to decrease the FFA content (<1%), and
later, a basic transesterification is carried out.

The mechanism of this process is shown in Scheme 3. It begins with the protonation of
the carboxylic group of the ester (this step is the most important in the catalyst-reactive
relationship), followed by the action of the acid catalyst (H+), followed by the nucleophilic
attack of the alcohol, producing a tetrahedral intermediate. This intermediate breaks down
to form a diacylglyceride ion and the ester alkyl of the fatty acid; these steps continue until
three fatty acid esters are formed and, subsequently, the glycerol is released.
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3.1.2. Homogeneous Basic Catalysis

This type of catalysis is the most extensively utilized at the industrial level, as ho-
mogeneous basic catalysts are low-cost and easy to access [106]. It is also due to their
high reaction rates, which implies shorter reaction times, lower methanol:oil molar ratios
than acid catalysis, and mild reaction temperatures. Furthermore, the use of this catalysis
allows the elimination of corrosion problems related to the use of acid catalysts. The
transesterification reaction employing basic catalysts is faster than with homogeneous
acid catalysts [123,124]. The most commonly used basic catalysts are KOH, NaOH, and
CH3ONa. Some examples of these catalysts can be seen in Table 4.

Table 4. Examples of basic homogeneous catalysts used in biodiesel production.

Catalyst Oil Reaction Conditions Methyl Esters Content
(%FAMEs) References

NaOH WCO

T = 62.4 ◦C; CC% 1.16%wt; M:o = 9.4:1;
t = 0.017 h

Esterification
(1.56%wt FFA)

Transesterification
(0.35%wt FFA)

99.7 [125]

CH3ONa Refined palm oil T = 55 ◦C; CC% 0.32%wt; M:o = 5.48:1;
t = 0.67 h 98 [126]

KOH Black mustard oil T = 57.1 ◦C; CC% 0.4%wt;
M:o = 20.39%wt; t = 0.9 h; 0.8%wt FFA 97.3 [127]

KOH Jatropha curcas-WCO T = 50 ◦C; CC% 1%wt; M:o = 6:1;
t = 2 h; 1%wt FFA 97.1 [128]

CH3ONa WCO T = 65 ◦C; CC% 0.75%wt; M:o = 9:1;
t = 0.13 h; 2.4%wt FFA 97.1 [129]

NaOH Black mustard oil T = 59.5 ◦C; CC% 0.5%wt;
M:o = 21.5%wt; t = 1 h; 0.8%wt FFA 96.9 [127]

KOH Waste Cotton oil T = 50 ◦C; CC% 0.65%wt; M:o = 7:1;
t = 0.16 h

96.44
(Microwave) [130]
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Table 4. Cont.

Catalyst Oil Reaction Conditions Methyl Esters Content
(%FAMEs) References

KOH WCO T = 65 ◦C; CC% 1.2%wt; M:o = 6:1;
t = 1 h; 1.25%wt FFA 93.2 [131]

NaOH Mango oil T = 60 ◦C; CC% 1%wt; M:o = 6:1;
t = 3 h; 0.06%wt FFA 92.7 [132]

KOH WCO T = 60 ◦C; CC% 1.2%wt; M:o = 5:1;
t = 2 h; 0.41%wt FFA 92 [133]

CH3ONa WCO T = 25 ◦C; CC% 0.75%wt; M:o = 6:1;
t = 0.05 h; <2%wt FFA 87.0 [134]

NaOH WCO T = 56.5 ◦C; CC% 0.75%wt; M:o = 12:1;
t = 3.25 h; 0.92%wt FFA 82 [135]

KOH WCO T = 60 ◦C; CC% 1%wt; M:o = 6:1;
t = 0.5 h; 0.93%wt FFA 94.01 [136]

CH3OK WCO T = 60 ◦C; CC% 1%wt; M:o = 6:1;
t = 0.5 h; 0.93%wt FFA 99 [136]

KOH WCO T = 60 ◦C; CC% 1%wt; M:o = 8:1; t = 2 h 92.5 [137]

NaOH WCO T = 65 ◦C; CC% 0.8%wt; M:o = 12:1;
t = 0.033 h

98.2
(Microwave) [138]

KOH Soybean WCO T = 60 ◦C; CC% 0.5%wt; t = 2 h 93.2 [139]

T—Reaction temperature, CC—Catalyst weight, M:o—Methanol:oil molar ratio, t—Reaction time.

By contrasting Tables 3 and 4, it can be concluded that both acid and basic catalysis
allow the production of biodiesel at mild temperatures (∼60 ◦C). The obtained yields
with basic catalysis tend to be higher with lower reaction times. The methanol:oil ratio
(M:o) is also observed to be lower under basic catalysis. This does not represent an
improvement only in the process cost but also in energy consumption and therefore in
environmental impacts like global warming potential (carbon footprint), which is expected
to decrease [107].

Some of the disadvantages of homogeneous basic catalysts include the need to perform
washes to remove the catalyst at the end of the reaction, as well as not being able to recover
the catalyst [9,140]. The most important disadvantage of this type of catalyst, however,
lies in its high sensitivity to the presence of water or FFA within the lipid raw material,
since this type of catalyst needs to use refined feedstocks (<1%wt) or with a content of
FFA <2% weight [141–143].

Generally, to reach high-quality biodiesel from WCO, it is necessary to perform
a previous acid esterification (Scheme 1). In esterification, FFA present in oils is trans-
formed into biodiesel, which leads to a reduction of the percentage content of FFA in
the lipid raw material, making it possible to carry out a basic transesterification without
saponification.

Nevertheless, recent research has shown that the use of systems assisted by ultrasound
allows for high-quality biodiesel production using WCO with elevated FFA content and
basic catalysts. This is due to the fact that ultrasound waves influence heating at the
molecular level, allowing internal heating to be distributed evenly [130].

Table 4 shows that percentage contents of FAMEs higher than the minimum required
by the UNE-EN 1403 standard (96.5% FAMEs minimum) can be obtained. However, in
most cases, the acidity values reported for the used cooking oils were low (<2%wt), which
is considered the limit for obtaining high-quality biodiesel. It can also be observed that
in the case of feedstocks with a FFA with a higher content than refined oils (>1%wt), it is
necessary to conduct a prior esterification to obtain biodiesel with a standard quality. The
above-mentioned agrees with that reported by Hsiao and Mohadesi, who required carrying
out prior esterification to obtain high-quality biodiesel.
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The mechanism using basic catalysts (Scheme 4) can be accomplished by the attack
of the alkoxide ion on the electrophilic carbon of the triglyceride, forming an alkyl ester
(tetrahedral intermediate). Subsequently, the catalyst is deprotonated, and the proton is
joined to the diglyceride anion until esters and glycerol are formed.
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As mentioned above, the transesterification reaction using homogeneous catalysts
involves 3 stages: the triglyceride (TG) reacts with alcohol to obtain diglycerides (DG)
TG + ROH ↔ DG + R′CO2R , this reacts with alcohol to form monoglycerides (MG)
DG + ROH ↔ MG + RCO2R and finally, it reacts with alcohol to produce methyl esters
and glycerol (GL) MG + ROH ↔ GL + RCO2R .

For the determination of the kinetics of transesterification, DG and MG can be omitted
since methyl esters are the final product of this reaction, allowing us to use a simple
mathematical model that expresses total conversion as a single step. With respect to
the reversible reactions, they can also be depreciated due to the excess of methanol in
the product. Furthermore, in this reaction, there are no mass transfer problems, the
kinetic process is chemically controlled [144], and the kinetics of transesterification can be
considered irreversible pseudo-first order [145].

3.2. Enzymatic Catalysis

Recently, this type of biocatalyst has gathered the attention of researchers due to its
potential to produce quality biodiesel from high FFA content feedstocks with yields close
to 100% and a reduction of impurities in the final product. In addition, the formation of
soap is eliminated, the enzymes have a high tolerance to water content, have minor energy
consumption since the reaction is conducted at low temperatures, can be recycled when
immobilized, and are easily separated and purified from the products at the end of the
reaction [146]. However, it still presents limitations on an industrial scale as a result of the
high cost, deactivation of the enzyme, and low reaction rate [147]. Furthermore, as can be
seen in Table 5, the yields achieved are not as high as those achieved by basic catalysis (see
Table 4).
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Enzymatic catalysts are mainly divided into three types: extracellular lipases, intracel-
lular lipases, and free enzymes (see Table 5) [148,149].

Table 5. Examples of enzymatic catalysts used in the biodiesel production.

Catalyst Oil Reaction Conditions Methyl Esters Content
(%FAMEs) References

Callera TM Trans Lipase Soybean T = 35 ◦C; CC% 1.45%wt;
M:o = 4.5:1; t = 24 h 96.9 [150]

Lipozyme (Thermomyces
lanuginosus)

Wasted
fenix oil

T = 31 ◦C; CC% 9.7%wt;
M:o = 4.3:1; t = 6.9 h 93.8 [151]

Pseudonomas cepacia Jatropha T = 8 ◦C; CC% 5%wt;
M:o = 4:1; t = 50 h 98.0 [152]

Rice bran lipase Rice bran oil T = 40 ◦C; CC%;
M:o = 6:1; t = 288 h 83.4 [153]

Novozym 435 Waste
Fish oil

T = 35 ◦C; CC% 50%wt;
E:o = 35.45:1; t = 8 h 82.91 [154]

Novozym® 435 WCO T = 50 ◦C; CC% 40%wt;
M:o = 6:1; t = 14 h 72.0 [155]

Chromobactrium viscosum Jatropha curcas T = 30 ◦C; CC% 10%wt;
M:o = 4:1; t = 4 h 51–65 [156]

B. stearothermophilus and
S. aureus lipases
(Inmobilized)

WCO T = 55 ◦C; CC% 1%wt (50% of
each lipase); M:o = 6:1; t = 24 h 97.66 [157]

Oreochromis niloticus lipase WCO T = 45 ◦C; CC% 30 kUnit;
M:o = 4:1; t = 28 h 96.5 [158]

Candida rugosa and
Rhizomucor miehei lipases

(Inmovilized)
WCO T = 45 ◦C; CC% 1%wt (50% of

each lipase); M:o = 6:1; t = 24 h 96.5 [159]

Burkholderia cepacia lipase
(Immobilized) WCO T = 35 ◦C; CC% 25%wt;

M:o = 6:1; t = 25 h 85.2 [160]

Candida sp. lipase WCO T = 40 ◦C; CC% 1%wt; t = 12 h 80 [161]

Lipase from porcine
pancreas WCO T = 40 ◦C; CC% 7.5%wt;

M:o = 9:1; t = 10 h 92.33 [162]

T—Reaction temperature, CC—Catalyst weight, M:o—Methanol:oil molar ratio, E:o—ethanol:oil molar ratio,
t—Reaction time.

In the case of extracellular lipases, they offer great selectivity, preventing the generation
of by-products such as soaps and baits. However, they are expensive to produce due to their
complicated synthesis process, they can be easily deactivated by the wrong alcohol selection,
their reaction times are higher than basic catalysis (3–288 h), and enzimatic catalysts have
a high affinity for glycerin, which implies a drawback in their separation [22]. Intracellular
lipases can be used directly as catalysts, which makes them cheaper since expensive
processes such as extraction and purification are omitted [22]. In 2021, Acherki et al. [163]
reported the use of the Eversa® Transform 2.0 liquid enzyme with jatropha oil and butanol,
obtaining 83% biodiesel conversion (T = 42 ◦C, 9.79%wt catalyst). One of the advantages of
this enzyme is its low cost, the handling of oils with high FFA contents, and the fact that no
purification steps are required. A Finally, it is known that free enzymes or liquid enzymes
offer better miscibility and mass transfer, although they cannot be reutilized.

Figure 5 represents a process scheme using enzymes. When using WCO, it is necessary
to carry out a filtration to separate the solid particles. Later, it is recommended to dry the oil
in order to eliminate excess water since the presence of a lot of water may be undesirable,
without forgetting that water is necessary to maintain the catalytic activity of enzymes [101].
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Figure 5. Schematic of biodiesel production process using enzimatic catalysts.

The transesterification mechanism using an enzymatic catalyst involves two steps:
1. Hydrolysis of the esters to produce FFA; 2. Esterification to obtain esters (FAME). Fur-
thermore, it is assumed that the transesterification reactions with alcohol (methanol) are
simultaneous with the hydrolysis reactions [164–166]. Scheme 5 shows the mechanism
proposed by Andrade et al. [165] for enzymatic transesterification of castor oil, where:
TG = triglycerides, DG = diglycerides, MG = monoglycerides, FAME = fatty acid methyl es-
ters, FFA = free fatty acids, MeOH = methanol, W = water, GLY = glycerol, and E = enzyme.

3.3. Heterogeneous Catalysis

This kind of catalysis occurs when the reagents and the catalyst are in different phases,
the most common being that the catalyst is in solid form. Heterogeneous catalysis arose
from the need to reduce production costs implied by homogeneous catalysts.

These catalysts caught the attention of researchers because they can be separated
and reused many times before losing their catalytic activity, which allows cost reduction
in biodiesel production by reducing post-treatment complexity [167]. This is the reason
heterogeneous catalysis is considered the most effective way to produce biodiesel from
lipid raw materials with high FFA content [167].
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However, the main objection to the use of these catalysts lies in the contamination
of the final product derived from the leaching of the active sites and in the mass transfer
problems derived from the solid-liquid biphasic reaction [22]. Figure 6 shows the processes
of heterogeneoeus catalysis.

Next, the subdivisions of this type of catalysis are discussed: (1) Heterogeneous acid
catalysis and (2) Heterogeneous basic catalysis.

3.3.1. Heterogeneous Acid Catalysis

This type of catalyst is effective for biodiesel production from lipids with high FFA
content [167]. This type of catalyst can simultaneously perform the esterification of the FFA
and the transesterification of the triglycerides present in the lipid raw materials since these
catalysts have Brönsted acid sites and Lewis acid sites capable of promoting esterification
reactions and ester exchange reactions [168,169]. Although transesterification can also be
conducted on acid sites, this proceeds at a very low rate [170].

The most commonly used acid heterogeneous catalysts are mixed metal oxides, het-
eropoly acid derivates, ion exchange resins, sulfonated carbon-based catalysts, and sulfated
catalysts [170,171]. Table 6 below shows some examples of heterogeneous acid catalysts, as
well as the raw material from which biodiesel was produced, the reaction conditions used,
and the %FAMEs obtained.
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Table 6. Examples of heterogeneous acid catalysts used for biodiesel production.

Catalyst Oil Reaction Conditions Methyl Esters Content
(%FAMEs) References

4-BDS Palm oil T = 110 ◦C; CC% 20%wt;
M:o = 30:1; t = 7 h 98.1 [172]

(ZS/Si) Zinc stearate WCO T = 200 ◦C; CC% = 3%wt;
M:o = 18:1; t = 10 h; 15%wt FFA 98 [173]

Sulfonated
hypercrosslinked

exchange resin
WCO T = 60 ◦C; CC% 5%wt; M:o = 12:1;

t = 2 h 97 [174]

C-SO3H Oleic acid T = 80 ◦C; CC% 8%wt; M:o = 21:1;
t = 1 h 96.77 [175]

TPA/Bentonite WCO T = 100 ◦C; CC% 0.7 g; M:o = 10:1;
t = 4.5 h, 11.2%wt FFA 96 [37]

SO4/Fe-Al-TiO2 WCO T = 90 ◦C; CC% = 3%wt;
M:o = 10:1; t = 2.5 h; 2%wt FFA 96 [176]

S-TiO2/SBA-15 WCO T = 200 ◦C; CC% = 1%wt;
M:o = 15:1; t = 0.5 h; 2.92%wt FFA 94.96 [177]

WO3/ZrO2 S. obliquus lipids T = 100 ◦C; CC% = 15%wt;
M:o = 12:1; t = 3 h 94.58 [111]

Carbon acid catalyst WCO
Prior esterification

T = 100 ◦C; CC% 5%wt; M:o = 22:1;
t = 3 h 92.3 [178]

H2SO4/Bamboo ashes Oleic acid T = 65 ◦C; CC% 0.3 g;
Metanol: 2.7 g; t = 8 h 92.1 [84]

Carbon acid catalyst Chicken fat T = 200 ◦C; CC% 3%wt; M:o = 9:1;
t = 6 h; 50%wt FFA 90.8 [178]

RS-SO3H WCO T = 70 ◦C; CC% 5%wt; M:o = 18:1;
t = 1 h 90.38 [78]
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Table 6. Cont.

Catalyst Oil Reaction Conditions Methyl Esters Content
(%FAMEs) References

Bi2SiO5 Oleic acid T = 70 ◦C; CC% 10%wt; M:o = 20:1;
t = 6 h; 2.8%wt FFA 90.0 [179]

Xylose derived sulfonated
carbon catalyst WCO T = 80 ◦C; CC% 0.3 g; M:o = 120:1;

t = 2 h 89.6 [180]

SO4
−2/ZrO2 WCO T = 150 ◦C; CC% 10%wt;

M:o = 10:1; t = 4 h; 2.7%wt FFA 86 [181]

MgFx(OH)2−x WCO T = 150 ◦C; CC% 5%wt; M:o = 30:1;
t = 5 h; 13%wt FFA 75.29 [182]

T—Reaction temperature, CC—Catalyst weight, M:o—Methanol:oil molar ratio, t—Reaction time.

As can be seen in Table 6, these catalysts are capable of producing biodiesel with a high
amount of FAMEs from lipid raw materials whose FFA content is higher than refined oils
(such as animal fats and WCO). For conventional batch systems, this type of catalyst
requires longer reaction times as well as higher reaction temperatures (60–220 ◦C) [101,183].
Some of their main advantages are found in their ease of recovery, their ability to be reused,
the reduction of their corrosive nature (compared with homogeneous), and the possibility
of esterification and transesterification taking place simultaneously.

The works cited in Table 6 show that most of the WCOs used have an FFA content
greater than 2%wt, which means those lipidic raw materials are considered low-quality
oils. Despite the above, most of the catalysts manage to obtain >90% FAMEs at the end of
the reaction; nonetheless, relatively long reaction times (2–7 h) were required to reach these
percentages. In addition, many of these catalysts require MeOH:oil molar ratios greater
than 10:1. This leads to mass transfer problems (catalyst separation problems), increased
production costs [68,105] and a negative effect on environmental impact categories such as
global warming potential and photochemical oxidation [107].

The foregoing has motivated the search for catalysts that are capable of reducing such
reaction conditions, in addition to seeking to reduce the environmental impact derived
from the corrosive nature of this type of catalyst.

The mechanism of the esterification reaction (Scheme 6) by acid catalysts, begins with
the donation of an H+ to the carboxylic acid, later it undergoes the nucleophilic attack
by the hydroxyl group of the methanol to continue with the reaction until the water is
eliminated [184].
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According to several experimental studies using heterogeneous acid catalysts with
high FFA content oils, the experimental data approximates a pseudohomogeneous irre-
versible reaction [168,185]; first order for both FFA content and methanol concentration.
The above agrees with Zeng et al. [184], who found that when heterogeneous acid catalysts
are used, the esterification reaction follows a second-order mechanism.

3.3.2. Heterogeneous Basic Catalysis

This type of catalyst has been extensively investigated as it shows attractive catalytic
activities under mild reaction conditions as well as easy recovery and the ability to be
reused [106,186].
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Nonetheless, using these catalysts during the transesterification reaction of oils with
a high FFA content might result in a reduction in the quality of the biodiesel obtained
because the saponification reaction is favored [167]. This not only lowers the biodiesel
yield but also implies two main consequences: it makes it harder to separate glycerol
from biodiesel in addition to consuming the added catalyst [187]. Furthermore, this
type of catalyst is highly sensitive to poisoning when exposed to air (absorbing CO2 and
humidity) [186].

The most frequently used basic heterogeneous catalysts are zeolites, transition metal
oxides, hydrotalcite-based catalysts, mixed metal oxides, and alkaline earth metal ox-
ides [170]. These catalysts have good reaction kinetics and adsorption capacities and are
widely available in nature, which makes them low-cost [187].

Table 7 shows some examples of basic heterogeneous catalysts, as well as the sort of
raw material from which biodiesel was produced, the reaction conditions used, and the
%FAMEs obtained at the end of the reaction.

Table 7. Examples of basic heterogeneous catalysts used in biodiesel production.

Catalyst Type of Oil
Used Reaction Conditions Yield

(%FAMEs) References

K2CO3/Sepiolite Turnip oil T = 70 ◦C; CC% 2%wt; E:o = 12:1; t = 4 h 99.9 [188]

Na2ZrO3 Jatropha curcas L. oil T = 65 ◦C; CC% 5%wt; M:o = 65:1; t = 8 h 99.9 [189]

CaO WCO T = 80 ◦C; CC% 2%wt; M:o = 9:1; t = 0.17 h 98.7 [190]

CaO WCO T = 55 ◦C; CC% 6%wt; M:o = 8.3:1; t = 0.67 h 98.62 [191]

CaO (Mixture of blended oil) T = 61.61 ◦C; CC% 4.5%wt; M:o = 8:1; t = 1.08 h 98.0 [192]

KOH/limestone WCO T = 65 ◦C; CC% 5.36%wt; M:o = 12.26:1; t = 0.97 h 97.15 [193]

MgO-NaOH WCO T = 50 ◦C; CC% 3%wt; M:o= 6:1; t = 6 h 97 [194]

CH3ONa/Bentonita Sunflower oil T = 55 ◦C; CC% 2%wt; M:o = 12:1; t = 1.17 h 94.33 [195]

MgO WCO T = 65 ◦C; CC% 2%wt; M:o = 24:1; t = 1 h 93.3 [196]

SrO WCO T = 65 ◦C; CC% 3%wt; M:o = 9:1; t = 0.07 h 93 [197]

CaO Waste Cotton Oil T = 50 ◦C; CC% 1.3%wt; M:o = 9.6:1; t = 0.16 h 89.94 [130]

α-Fe2O3-Al2O3 WCO T = 65 ◦C; CC% 1%wt; M:o = 15:1; t = 3 h 87.78 [198]

KOH/Diatomita Palm oil T = 75 ◦C; CC% 5%wt; M:o = 9:1; t = 2 h 84.56 [199]

T—Reaction temperature, CC—Catalyst weight, M:o—Methanol:oil molar ratio, t—Reaction time.

Nevertheless, a major disadvantage of these catalysts involves the decrease of their
catalytic activity derived from the adhesion of reaction by-products, which results in the
deactivation of the catalytic materials [200].

The results observed in Table 7 indicate that when there is a raw material with a greater
FFA content than a refined oil (such as non-edible oils and WCO), they require higher
temperatures of reaction (to increase the collisions among molecules and to improve the
reaction rate), higher methanol:oil molar ratios, and a higher catalyst loading to obtain
biodiesel with a higher FAME content.

The aforementioned reaction conditions are linked to the basicity of the material used
and possible mass transfer problems. As an example of the above, it is well known that
using alcohol in excess will result in mass transfer problems [201].

Most of the works cited in Table 6 use WCO with FFA contents lower than 2%wt,
which allows this type of catalyst to obtain 85–99.9% FAMEs after the transesterification
reaction. Though we must remember that international standards require a 96.5% FAMEs
content to consider that the biodiesel has quality enough for its usage in engines.
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On the other hand, it is essential to remember that basic catalysts have a high sensitivity
to the FFA content, which is why, in the case of a low-quality raw material (>2%wt FFA),
it is necessary to reduce said content of FFA, for which an acid esterification reaction is
usually used as a pretreatment.

In addition, it is necessary to carry out process optimization. Some investigations
have suggested the use of microwave-assisted or ultrasonic systems to overcome the mass
transfer problems that occur in conventionally stirred processes, thus reducing reaction
times [170].

The mechanism of transesterification using a basic heterogeneous catalyst (Scheme 7)
begins with the formation of the methoxide anion, followed by the attack of the carbon
of the carbonyl group by the methoxide anion, forming an intermediate, to obtain the
ester and a diglyceride anion, which are compounds more stable. Subsequently, the attack
of the cation by the diglyceride anion occurs, forming the diglyceride regenerating the
catalyst (CaO). The mechanism is repeated until the methyl esters (biodiesel) and glycerol
are formed.
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Nain et al. [202] analyzed two kinetic models based on Langmuir-Hinshelwood-
Hougen-Watson (LHHW) and Eley-Rideal (ER) mechanisms of the transesterfication reac-
tion of canola oil and quicklime (CaO) as a heterogeneous catalyst. They concluded that
the best model, according to their experimental data, is the Eley-Rideal mechanism and
that the controlling step is the surface reaction [202]. This is consistent with the ER model,
especially when a highly basic catalyst is used, like CaO, BaO, or SrO [203]. Likewise, they
observed that there was no adsorption of triglycerides on the surface of the catalyst, this
being caused by the rapid adsorption of methanol [202].

3.3.3. Bifunctional Catalysis

As previously mentioned, biodiesel’s final quality is clearly related to the content of
FFA in the feedstock. In feedstocks with a low content of FFA (<2%wt), a transesterification
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reaction is good enough to obtain a high-quality product. Furthermore, the high sensitivity
of the transesterification reaction to the FFA content results in its saponification or in
obtaining low-quality biodiesel. To avoid the above drawbacks and ensure the quality
of the final product, it is necessary to carry out a process consisting of two steps, which
consist of a prior esterification reaction (to transform the FFA into FAMEs) and later
a transesterification of the triglycerides (see Figure 7).
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In the related literature, there is a broad variety of bifunctional catalysts used for
biodiesel synthesis. These catalysts generally consist of mixtures of some support and metal
oxides. Nevertheless, it is also possible to find bio-based catalysts [204,205]. Additionally,
it is precisely these catalysts based on biomass that have gained more attention in recent
years due to their economic origin and because they are friendly to the environment [206].

The obstacles mentioned above for catalysts in transesterification reactions have
allowed the development of research focused on obtaining sustainable technology for
biodiesel production. Within these investigations, the attention of researchers has been
centered on the use of bifunctional catalysts, also known as acid-base catalysts. These
catalysts involve the conjugation between a metal and metal oxides, which gives them both
acid and basic sites [207,208].



Processes 2023, 11, 1952 22 of 40

Below, Table 8 shows some examples of bifunctional catalysts, as well as the sort of
lipidic raw material employed, the reaction conditions used, and the %FAMEs obtained at
the end of the reaction.

Table 8. Examples of bifunctional catalysts used in biodiesel production.

Catalyst Oil
Used Reaction Conditions Methyl Esters Content

(%FAMEs) References

Fly ash WCO T = 59 ◦C; CC = 11.2%wt;
M:o = 3.1:1; t = 6 h 100 [209]

CaO(10%)-Fe2O3(10%) WCO T = 65 ◦C; CC = 3%wt;
M:o = 18:1; t = 3 h 98.3 [210]

TiO2/PrSO3H WCO T = 60 ◦C; CC = 4.5%wt;
M:o = 15:1; t = 9 h 98.3 [211]

RHC/K2O-20%/Ni-5% WCO T = 65 ◦C; CC = 4%wt;
M:o = 12:1; t = 2 h 98.2 [212]

CaO/Al2O3 WCO T = 60 ◦C; CC = 2.5%wt;
M:o = 12:1; t = 3 h 98.23 [213]

MgO/MgSO4 WCO T = 50 ◦C; CC = 6.4%wt;
M:o = 10.8:1; t = 0.8 h 98.8 [214]

LiNbO3 WCO T = 65 ◦C; CC = 2%wt;
M:o = 24:1; t = 6 h 98.08 [140]

CaO/Al2O3 WCO T = 65 ◦C; CC = 1%wt;
M:o = 11:1; t = 4 h 98 [215]

KOH/AC WCO T = 45 ◦C; CC = 1%wt;
M:o = 18:1; t = 1 h 97.8 [216]

SrTi0.85Fe0.15O3 Palm oil T = 170 ◦C; CC = 5%wt;
M:o = 18:1; t = 3 h 97.52 [217]

Sn-CaO WCO T = 85.15 ◦C; CC = 2.2%wt;
M:o = 16.1:1; t = 3.42 h 97.39 [218]

SrO-ZnO/Al2O3 WCO T = 75 ◦C; CC = 15%wt;
M:o = 10:1; t = 5 h 95.7 [219]

10W/BV WCO T = 65 ◦C; CC = 8%wt;
M:o = 6:1; t = 7 h 96 [220]

Sulfonated RHC WCO T = 50 ◦C; CC = 3.5%wt;
M:o = 13:1; t = 0.84 h 96 [221]

2.6SrO-ZnO/Al2O3 (2.6SZA) WCO T = 75 ◦C; CC = 15%wt;
E:o = 10:1; t = 5 h 95.7 [219]

PKSAC-K2CO3(30%)CuO(5%) WCO T = 75 ◦C; CC = 15%wt;
M:o = 10:1; t = 5 h 95 [222]

WO3-Zr2O3 (7WZ) WCO T = 80 ◦C; CC = 2%wt;
M:o = 15:1; t = 1 h 94.4 [167]

SrTiO3 Palm oil T = 170 ◦C; CC = 6%wt;
M:o = 15:1; t = 3 h 93.14 [223]

BBFC Neen seed oil T = 61.9 ◦C; CC = 2.58%wt;
M:o = 14.76:1; t = 1.21 h 92.89 [224]

CaO-CeO2 WCO T = 70 ◦C; CC = 4%wt;
M:o = 9:1; t = 1.2 h 90.14 [225]

CaO-Ca2Fe2O5-CaFeO3 WCO T = 60 ◦C; CC = 5%wt;
M:o = 12:1; t = 2 h 90 [71]

Cu/Zn/γ-Al2O3 Low grade T = 65 ◦C; CC = 10%wt;
M:o = 20:1; t = 2 h 88.82 [226]

MgO-SnO2 WCO T = 60 ◦C; CC = 2%wt;
M:o = 18:1; t = 2 h 88 [227]

7% SR/ZrO2 WCO T = 70 ◦C; CC = 1%wt;
M:o = 15:1; t = 0.34 h 85 [228]

T—Reaction temperature, CC—Catalyst weight, M:o—Methanol:oil molar ratio, E:o—Ethanol:oil molar ratio,
t—Reaction time.



Processes 2023, 11, 1952 23 of 40

In Table 8, it can be seen there is a wide variety of materials that can be used to
synthesize bifunctional catalysts. To dope the support, metals such as tungsten [167],
lanthanum [229,230], strontium [219], iron [71,229], and zirconium [231,232]. It is also
important to note that each metal will have its own catalyst characteristics, such as the
crystalline phases present and acid strength. The catalytic features will depend on oxidation
states, the synthesis method used, and the catalyst precursor [71].

The combination of Lewis and Brönsted acid sites within the bifunctional catalyst
gives them a greater tolerance to FFA content in the lipid feedstock than basic catalysts, in
addition to eliminating the low catalytic activity of acid catalysts [140]. They are also easily
recoverable, which simplifies the end of the end of the need for takeout washings [140].
The above leads to a reduction in the process’s total cost.

Two of the main advantages of bifunctional catalysts are: (1) they are able to con-
currently carry out the esterification as well as the transesterification [140]; and (2) these
catalysts can be designed for specific needs, which allows them to have high selectiv-
ity [183]. In the case of biodiesel production, this permits the use of low-purity oils without
complex production and purification processes [9].

The supports used in the synthesis of these catalysts are also very important since
they can be obtained from various metal oxides such as Li2CO3 [140], CaO [213,225],
ZrO4H4 [167], and Al2O3 [219], among others. These supports will provide different
densities of basic sites, pore sizes, and surface areas, which will affect the final properties of
the catalyst and directly influence the percentage content of FAMEs obtained at the end of
the reaction.

In the search for cheap raw materials, multiple materials were discovered that are
sources of metal oxides; some of them are considered waste, which makes them low-cost
raw materials as CaO sources such as eggshell [233] and recycled waste oyster shells [234].
As a result of the high tolerance to the FFA content of the bifunctional catalysts, we can see
that most of those listed in Table 8 managed to obtain a high FAME content (>90%) at the
end of the reaction.

Despite having reaction times ranging from 20 min to 9 h, it is possible to obtain
high-quality biodiesel from a low-quality raw material in a single-step process consid-
ering that FFA esterification and triglycerides transesterification are carried out concur-
rently, which allows the reduction of production costs and the environmental impact of
energy consumption.

In addition, the works presented in Table 8 show that with this type of catalyst, in most
cases, it is possible to work with mild reaction temperatures. Depending on the catalyst
used, using higher reaction temperatures allows the catalyst to use feedstocks with higher
water contents (8%wt) without affecting the %FAMEs obtained, as reported by Li [235].

As can also be observed in Table 9, the use of nanocatalysts/magnetic catalysts. Several
investigations of nanocatalysts, most of them bifunctional, have been reported in recent
years. Nanocatalysts’ advantages are their high efficiency, minimal generation of chemical
residues, safety, reduced global warming, economic efficiency, and energy efficiency [236].
However, one of the most important disadvantages of this type of catalyst is the difficulty
of separating it from the reaction mixture. Therefore, they have been synthesized using
magnetic metals to facilitate their separation and using biomass materials in several of them.
A nano-magnetic catalyst (K/ZrO2/g-Fe2O3) was synthesized by Liu et al. [237] for the
transesterification of soybean oil, obtaining promising results with 5% by weight of catalyst,
a methanol-oil molar ratio of 10:1, a temperature of reaction of 65 ◦C, and 3 h of reaction.
A yield of 93.6% of biodiesel was obtained, presenting good magnetic characteristics that
allowed the adequate separation of the reaction products. Liu et al. [237] synthesized
a bifunctional magnetic catalyst based on bamboo charcoal, potassium, and iron (K/BC-
Fe2O3) to obtain biodiesel using soybean oil. This catalyst presented excellent catalytic
activity and good recoverability, reaching 98% yield with 2.5% catalyst, a methanol:oil
8:1 molar ratio, a reaction time of 1 h, and a temperature of 60 ◦C.
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In Scheme 8, the mechanism of the transesterification reaction using bifunctional
catalysts can be observed. It is carried out in three steps: (a) adsorption of the FFA from
the WCO on the acid sites and adsorption of methanol on the basic sites of the catalyst;
(b) reaction on the catalyst surface; and (c) desorption of methyl esters, glycerol, and
water. In this scheme, Enguilo et al., using a Fe/CaO bifunctional catalyst, postulate
that iron (the proton donor) provides the sites for both FFA esterification and triglyceride
transeserification.
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An area of opportunity to further our knowledge regarding the use of bifunctional
catalysts to produce biodiesel is being able to establish the catalyst composition related
to a specific FFA content. In addition, it is crucial for the sustainability of the process to
conduct life cycle assessments, not only of the processes but also of the catalyst making,
since several authors have reported this to be one of the most important stages contributing
to the environmental impact [107,238].

In addition, it is crucial for the sustainability of the process to conduct life cycle
assessments, not only of the processes but also of the catalyst making, since several authors
have reported this to be one of the most important stages contributing to the environmental
impact.

Table 9 shows the advantages, disadvantages, and economic feasibility of catalysts
used for biodiesel production.
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Table 9. Pros, cons and economic feasibility of catalyst type used for biodiesel production.

Catalyst Pros Cons Economic Feasibility References

Homogeneous acid
– High tolerance to the presence

of water and FFA
– Ability to use low-cost

raw materials

– Environmentally harmful
– Safety risky
– Corrosive nature
– Needs higher methanol:oil

molar ratios
– Higher reaction temperatures
– Slower reaction rates
– Longer reaction times
– Generation of large amounts of

wastewater

The high quality of the raw
material significantly affects
the production cost
of biodiesel.
The corrosive nature of these
catalysts results in an
economically
unfeasible process.

[22,122,140,239]

Homogeneous basic

– Lower cost.
– High availability
– Lower methanol:oil ratios
– Mild reaction temperatures
– No corrosive problems
– Relatively short reaction times

– High sensitivity to the presence
of water and FFA

– Need of refined raw materials
– The need of a previous

esterification to manage raw
materials with elevated
FFA content

– High reaction rate
– Generation of large amounts

of wastewater

The high quality of the raw
material significantly affects
the production cost
of biodiesel.
It can be considered as an
economically viable option to
produce biodiesel from
high-quality oils.

[9,106,123,124,
140–143,239]

Enzymatic

– No catalyst leaching
is generated

– Easy recovery.
– Mild reaction conditions
– High tolerance to the presence

of FFA
– Lower reaction temperatures
– Ability to be recycled
– Easy recovery
– Great selectivity

– High cost of most enzymes
– Easily disactivated by wrong

alcohol selection
– Slower reaction rates
– Enzyme deactivation

The high quality of the raw
material significantly affects
the production cost
of biodiesel.
These catalysts are good
examples to produce
biodiesel from low-quality
feedstocks in one step.

[23,239–241]

Heterogeneous acid

– High tolerance to the presence
of FFA

– Reduction of corrosive nature
– Ability to carry out

esterification and
transesterification
simultaneously

– Ability to use cheaper
raw materials

– Ability to be easily separated
and recycled

– Reduce purification costs

– Active sites leaching
– Mass transfer problems
– Slow reaction rate for

transesterification reaction
– Needs higher methanol:oil

molar ratios
– Higher reaction temperatures
– Longer reaction times

High profit at
minimal investment.
The high quality of the raw
material significantly affects
the production cost of
biodiesel.

[101,170,183,
206,239]

Heterogeneous basic

– Ability to be easily separated
and recycled

– Reduce purification costs
– Mild reaction conditions
– Lower cost
– High availability
– Lower methanol:oil rates
– Shorter reaction times

– Active sites leaching
– Mass transfer problems
– High sensitivity to the presence

of FFA
– Sensitive to poisoning by

absorbing humidity and CO2
– Deactivation derived from

adherence of reaction
by-products

High profit at
minimal investment.
The high quality of the raw
material significantly affects
the production cost
of biodiesel.
It can be considered as an
economically viable option to
produce biodiesel from
high-quality oils.

[106,167,186,
206,239]

Bifunctional and
Nanocatalysts/magnetic

– High tolerance to the presence
of FFA

– Ability to use cheaper
raw materials

– Ability to be easily separated
and recycled

– Ability to carry out
esterification and
transesterification
simultaneously

– Reduce purification costs
– Mild reaction conditions
– Acid-base conjugation

eliminates low activity of
acid catalysts

– High selectivity
– They can be designed with

specific characteristics

– Active sites leaching
– Mass transfer problems
– Higher synthesis cost

depending on the used metal
– Complicated synthesis

The high quality of the raw
material significantly affects
the production cost
of biodiesel.
These catalysts are good
examples to produce
biodiesel from low-quality
feedstocks in one step.

[9,140,183,237,
239]
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4. Reactors for Biodiesel Production

In recent years, biodiesel production has focused on trying to reduce production costs
by using various feedstocks that make them decrease, since the raw material represents
60–80% of the production cost. Therefore, the development of catalysts as well as the types
of reactors have been essential to optimizing and developing new sustainable technologies.
In the previous section, different types and characteristics of the catalysts used to obtain
biodiesel were shown. As for the reactors, they have an important role in the yield of
biodiesel since they must be optimized to achieve greater sustainability, technical advan-
tages, and economic viability. In the process of obtaining biodiesel, vegetable edible and
non-edible oils are mainly used, although oil-containing materials such as seeds, rice bran,
spent coffee grounds, fat derived from insect biomass, animal fat, waste cooking oil, and
products from edible oil have also been employed as feedstocks [6,19,26,38,43,47]. In some
studies, pure acids such as oleic, caprylic, and capric acids, as well as pure triolein, have
been utilized [242]. The reactors that are typically used for biodiesel production are shown
in Figure 8.
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In plug–flow reactors, products have consistent quality. They use liquids with diverse
viscous ranges and have low maintenance and capital costs.

Rotating reactors have tubes, discs, and impellers that require different energy and
rotational power, directly affecting the biodiesel quality. These reactors are expensive
due to the large amount of energy needed [22].

The most widely used plug flow reactor is the tubular, or PFR, where the reagents are
fed, at a constant speed, through one end of the reactor with an adequate residence time
to allow the reagents to mix while they flow towards the outlet. When handling viscous
liquids, PFRs present laminar flows, so it is necessary to use injection devices (a T mixer) or
mechanical mixers. Some of the advantages of PFRs are that they do not require constant
maintenance, are built in small spaces, and have low capital costs [243,244].

The cavitation reactors usually used to obtain biodiesel are hydrodynamic and sono-
chemical. Cavitation reactors are multiphase reactors that intensify the process using
acoustic or flow energy, causing a cavitation phenomenon and, therefore, an increase in
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turbulence, thereby improving mass transfer. This cavitation phenomenon achieves high
values of temperature and pressure [243–245].

Simultaneous reaction-separation reactors perform the chemical reaction, extraction,
and separation of the products in a single stage. This type of reactor achieves better quality
and a higher biodiesel yield because there is an optimal mixture. Of these reactors, the
membrane ones are the most used in the production of biofuels since they do not require
additional units in the process. Reactive distillation has also been used for the simultaneous
reaction-separation process, which presents advantages over other reactors, such as short
reaction times and improved yields because the products are extracted immediately after
production. Costs decrease since additional operating units are not required [243,244].

Table 10 shows some research regarding the use of chemical reactors to obtain biodiesel
from waste cooking oil. To intensify the production of this biofuel, techniques such as
supercritical conditions [31], microwaves [170,246,247], ultrasonic [248], hydrodynamic
cavitation [245], and spinning disk [249] have been used to eliminate resistance to mass
transfer between alcohol and oil and have short periods and low energy consumption
compared to industrial processes that are currently used [245].

Table 10. Examples of bifunctional catalysts used in biodiesel production.

Type of Reactor Oil Catalyst Catalyst Load
(%)

Alcohol:Oil
Ratio

Reaction
Temperature (◦C)

Yield
(%FAMEs) References

Continuous
Flow-Microwave WCO SrO/SiO2 41 12:1 65 99.2 [247]

Hydrodynamic
cavitation WCO KOH 1 6:1 60 98.1 [245]

Ultrasonic WCO KOH 1 7.4:1 60 96.5 [250]

Microreactor WCO KOH 2 12:1 50 >95.00 [251]

Rotating flask
oscillatory flow Coconut CWO KOH 1 6:1 60 93.72 [252]

Reactive distillation WCO CaO Bed height of 150 mm 4:1 65 93.48 [253]

Microtubes
(prior esterification) WCO H2SO4 1 9:1 65 91.76 [254]

Microwave
Irradiation WCO KOH 0.5 5:1 - 91.63 [246]

Batch stirred tank WCO Fe/CaO 7 12:1 60 90.0 [71]

As seen in Table 10, moderate reaction temperatures (60 ◦C) and several homogeneous
and heterogeneous catalysts are used in different types of chemical reactors, obtaining
yields of at least 90% in all of them with WCO.

Tangy et al. [247] reported the highest yield using WCO (99.2%) in a continuous flow
reactor for microwave-assisted transesterification and heterogeneous catalysts (SrO/SiO2).
However, it is necessary to improve the process and see other catalyst synthesis options to
prevent SrO leaching and make the FFA content fed to the reactor more efficient.

On the other hand, microreactors, whose advantages include small diffusion dis-
tances, increased specific surface area, high heat and mass transfer rates, and greater
safety, have driven the study of capillary reactors for biodiesel production [251,254].
Tanawannapong et al. [254] reported biodiesel production from waste cooking oil using
a microtube reactor with a 1.2 cm length and an internal diameter of 0.508 mm along
with a T mixer at the inlet of the reactor; a methyl ester content of 91.7% was obtained in
a 5 s reaction time; this study verifies that the transesterification reaction takes a shorter
time as compared to the batch reactor. Although satisfactory initial results are observed,
the technology still requires advancements in certain areas. Further research is needed to
develop operating procedures that include the usage of feedstock, possessing increased
levels of free fatty acids, and exploiting heterogeneous catalysts, in addition to high costs
and complexities in the fabrication of glass and silicon microdevices [255].
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In summary, the cost-effectiveness of the transesterification reaction to produce biodiesel
rests heavily on many process parameters, namely the oil type and composition, type
and amount of the catalyst, type and quantity of alcohol, residence time and temperature,
and process intensification method. Actually, the last parameters depend upon catalyst
type, and therefore its cost and activity greatly affect not only the overall cost of the
process [107,206,256] but also the environmental impacts [107]. Actually, it has been
demonstrated by Alanis et al. that the metal precursor used to prepare the catalyst has
a significant impact on the production cost and energy consumption because the catalyst
activity is modified. Therefore, in order to minimize environmental impacts and the overall
cost of the catalyst preparation and the biodiesel production process, an optimization of
the catalyst synthesis must be conducted.

The batch operation remains the most common process for the production of biodiesel.
However, continuous production has advantages, such as small spaces for their installation,
reduced operating costs, low investment, and ensuring a product of consistent quality.
This approach is ideal when a fast response is required and offers higher heat transfer and
selectivity than the batch method. As a result of all of this, the biodiesel industry now has
its eyes on the continuous process model, hoping to solve batch production problems.

5. A Perspective on Biodiesel Production in Different Countries and Biodiesel
Commercialization Improvement Strategies

In the last decade, the production and consumption of biodiesel in different countries
in the world have been increasing due to the increase in energy demand derived from
the growth of the human population [257]. This has allowed these countries to embrace
policies related to biodiesel production.

• In the US, biodiesel is commonly used by the transportation sector through blends
with fossil fuels, such as B10 or B20. Demand for biodiesel in the US is expected to
increase as fossil fuels are replaced. As an example, biodiesel production in 2023
is expected to be 37% higher than in 2022 due to the implementation of economic
incentives by the government [258].

• The Canadian government has improved biodiesel production through subsidies to
decrease the cost of biofuel production and comply with the agreements established
in the 2030 Agenda. As an example, biodiesel production in 2026 is expected to be
313 M liters, compared to the 147 M liters awaited this year [258].

• In Latin America, the biodiesel production expected in 2023 is 635 M liters. In Brazil,
the variety of climates and the large expanse of soil allow it to cultivate various oilseeds.
Aside that, this country has policies that promote this biofuel usage [258].

• In Europe and the UK the biodiesel production expected in 2013 is 37% higer than in
2022 [258]. Due to the implementation of different policies in the EU, biodiesel will be
more accessible in order to reduce the use of fossil fuels.

Despite the abundance of available studies about biodiesel production from waste
cooking oil, there are still various strategies that could improve its commercialization.
These are presented below.

(a) Implementing efficient collection systems according to local regulations for the correct
disposal of lipid waste of animal or vegetable origin. Then the need for these regula-
tions arises because large quantities of this residue are produced worldwide, which
increases proportionally to the human population’s increase. To promote the recollec-
tion and correct disposition of WCO, several countries have implemented different
incentives. For instance, China’s government offers several subsidies, such as training,
a collecting system focused on the market, and professional disposal. In Japan, the
subsidies offered to biofuel producers allow for greater economic competitiveness
by reducing production costs. In Spain, there is a WCO recollection program where
collection bins are set up in some neighborhoods of Barcelona and Valladolid [259].

(b) Designing industrial-scale processes based on a circular economy perspective: In
recent years, this concept has been introduced with the idea of reducing waste to
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a minimum, which implies the employment of renewable energy sources to use energy
more efficiently and reuse process water [260,261].

(c) Life Cycle Sustainability Assessment (LCSA) of existing processes. This is mandatory
to estimate the environmental impacts of biodiesel production through different
processes, which ultimately will aid the government and industry in making decisions
about the less harmful process [259,262,263].

This tool has been applied to evaluate different biodiesel production processes, such as
the one conducted by Talens Peiró et al. [264] which found that the transesterification pro-
cess contributed 68% to the total impact. Lombardi et al. [265] reported a comparison
against several methods of biodiesel production, and it shows that NaOH-catalyzed trans-
esterification of WCO can lead to decreased environmental impacts [265]. Alanís et al. [107]
compared the environmental impacts of biodiesel production from WCO catalyzed by a het-
erogeneous bifunctional catalyst synthesized with two different iron salt precursors [107].

6. Conclusions

Biodiesel can be obtained by the esterification and transesterification of waste cooking
oil (WCO) as a raw material by homogeneous or heterogeneous catalysis. The type of
biodiesel production process impacts the quality of biodiesel. In this context, transester-
ification is highly preferred. The feedstock and catalysis type used to produce biodiesel
determine the stages of the process. The homogenously catalyzed process implies two more
steps than the latter, and those are esterification under acid conditions (usually adding
H2SO4) and elimination of the transesterification catalyst (usually a base like NaOH or
KOH) by washing with water. Enzymatic catalysis to conduct the process is not a viable
option due to the long reaction times and cost of the enzyme. Bifunctional catalysts are
solids that contain both acid and basic sites and are able to reduce the number of process
stages by simultaneously conducting esterification of free fatty acids and triglyceride trans-
esterification. This eliminates the need to add an acid and the high consumption of water
to clean the biodiesel.

The challenges to overcome in biodiesel production using WCO and bifunctional
catalysts are reducing costs and energy consumption, using catalysts whose synthesis
does not demand high loads of energy, and conducting life cycle assessments in order to
establish the environmental impacts of each process and provide a relevant criterion to
make the decision of electing or not electing a specific production process.

From the assessed processes to conduct the transesterification of WCO, the ones in-
cluding microwaves, microreactors, and reactive distillation seem to be the most promising
ones in terms of yield, reaction time, and number of involved stages.

Biodiesel from WCO usually does not meet all the standards, mainly that of methyl
esters content and viscosity. In order to use biodiesel from WCO, it is suggested to use it in
blends, to use co-solvents or to improve the pre-treatment of the raw material.
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